
Page 1 of 13

Status and Direction of Kernel Development

Andrew Morton
<akpm@linux-foundation.org>

<akpm@google.com>
Japan Linux Symposium 2007

March 2007



Page 2 of 13

Recap from June 2006

● NUMA work: ongoing
● Memory/NUMA-node hot-add: merged
● Memory hot-remove: no progress
● Memory anti-fragmentation: in progess
● Pagetable sharing: stalled
● Hugetlb work: slow progress
● Security: proceeding steadily
● OS virtualisation: proceeding slowly
● Hardware virtualisation: complete by mid-year
● Reiser4: stalled
● AIO: stalled
● Lockless pagecache: no progress



Page 3 of 13

Recap from June 2006 (cont'd)

● Ext4: slow progress
● eCryptfs: merged
● GFS2: merged
● fscache/cachefiles: stalled
● Per-task delay accounting: merged
● Statistics infrastructure: stalled
● Perfmon: little progress
● Kprobes: in maintenance
● Userspace probes: stalled
● Kdump: in maintenance
● Lock validator: merged
● CKRM: stalled/dead



Page 4 of 13

Recap from June 2006 (cont'd)

● Drivers: steady progress
● Driver hardening: no progress



Page 5 of 13

What's new?

● Hardware virtualisation
– KVM was merged quickly, is progressing
– Core paravirtualisation was merged
– VMWare VMI interface is merged
– Xen domU support will probably be in 2.6.22



Page 6 of 13

OS virtualisation

● Progress is slow and steady
● Most work involves virtualisation of the kernel's global 

namespaces
– utsname, PIDs, UIDs, shm IDs, mounts, netdevices, etc

● The core structure is the nsproxy
● We are merging it one component at a time
● The code at present isn't useful – more work needs to 

be done before we make it available to userspace



Page 7 of 13

Containerisation (resource management)

● Still no overall plan on how to do this
● Best prospect is generalisation of cpusets

– cpusets are presently a container for CPUs and NUMA 
nodes

– Rename cpuset to “container”, permit containment of other 
resources

● The big ones are CPU resources and memory
– Also net bandwidth and disk bandwidth

● Per-container memory limitation is a big problem
– We don't even have a usable design for this

● Memory containment can be implemented using 
existing cpusets and fake NUMA

● Help is needed with containerisation



Page 8 of 13

Memory management

● Mel Gorman's anti-fragmentation and 
ZONE_MOVEABLE work is in -mm

– Possibly useful for memory hot-unplug
– It is unclear how useful this will be for per-container 

memory limitation
● There are reports of scalability problems with large 

systems
– Possibly due to cacheline-capturing effects on multicore

● There are reports of memory reclaim inefficiencies 
under database workloads



Page 9 of 13

Filesystems

● XFS remains the filesystem of choice for high-end 
applications, due to superior scalability

● But vendors shy away from XFS for supportability 
reasons

● Vendors seem to be converging on ext4 due to 
widespread support and stability

● Ext4's roadmap looks good, but progress is slow
● Additional resources here will help
● NFS4 progressing steadily



Page 10 of 13

AIO

● Filesystem AIO is presently supported for direct-IO 
only

● AIO patches for buffered filesystem AIO are mature
– But might not be merged due to the syslets proposal

● syslets will make potentially all syscalls asynchronous
● Hence the present AIO code could be removed – 

applications simply do an asynchronous read()



Page 11 of 13

kevent

● Linux lacks a unified event delivery framework
● Pipes, ttys, sockets, AIO, signals, futexes, etc
● We should be able to wait upon any kernel completion 

in a single syscall in a unified fashion
● Kevent is a proposed framework for doing this
● But progress is slow due to lack of external review and 

testing



Page 12 of 13

Misc other new work

● Utrace: new process tracing infrastructure
– Ptrace becomes layered on top of utrace
– Utrace is basicaly a complete rewrite of ptrace

● New page replaccement algorithms are being discussed
● Kernel trace infrastructure using static markers
● Technology is being steadily moved over from the 

realtime kernel



Page 13 of 13

Kernel processes

● We use a two-week merge phase, followed by a two-
month stabilisation phase, followed by a release

● This process has been stable for several years and 
appears to be working OK

● Our weakness is, still, an inadequate amount of work 
put into resolving regressions

● Our tracking of bugs and regressions is also haphazard
● But there is little point in tracking bugs if there is 

nobody to fix them
● We devote too few resources to reviewing patches


