Virtualization with Xen and Linux

Chris Wright
chrisw@redhat.com
OSDL-Japan Linux Symposium
June 2006
Outline

- Virtualization Overview
- Xen Architecture
- Xen Current Status
- XenLinux upstream merge
- Xen Roadmap

Note: Much of the information in this presentation comes from papers, web pages and slides found at http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
Virtualization: Why?

- Server consolidation
 - Control physical server proliferation
- Fast and easy provisioning
 - Provision and deploy virtual machine is agile
- Hardware enablement
- Secure isolation
- Test and Debug
Virtualization: History

- Long history
 - 1960's IBM TSS research...1972 S/370 (VM/370)...present S/390

- Virtual Machine
 - Statistically significant number of instructions run on bare machine
 - Sensitive instructions trapped to VMM
 - Real challenge for x86 architecture ;-)
 - Non-privileged instruction symmetry
 - Memory protection
Virtualization Overview

- Partitioning single OS image: Linux-Vservers, OpenVZ, Solaris Zones
 - Group user processes into resource containers
 - Hard to get strong isolation
 - Sensitive to QoS Crosstalk

- Full platform virtualization/emulation: VMware, VirtualPC, QEMU
 - Run multiple unmodified guest OSes
 - Hard to efficiently virtualize x86

- Para-virtualization: UML, Xen
 - Run multiple guest OSes ported to special arch
 - arch/i386/mach-xen is very close to normal x86
Xen Today: Xen 3.0

- Secure isolation between VMs
- Resource control and QoS
- Prolific guest support
 - Linux, FreeBSD, Solaris, NetBSD, Plan9, Netware
 - Both UP and SMP guests supported
- Execution performance close to native
- Rich hardware support
 - Direct device access (leverage existing driver support)
 - paravirtual i386, x86_64, ia64, PPC, (rumor of SPARC port being underway)
- Support for hardware assisted full virtualization: HVM (VT-x and SVM), VT-i
- Loadable MAC security policy for hypervisor: Chinese Wall, Type Enforcement
- Live migration of VMs
Para-Virtualization in Xen

- Xen provides a new architecture which is very similar to x86
 - Privileged instructions are ported to Xen
 - e.g. LIDT, HLT, load and store CR/DR, INVLPG, CLI/STI
 - Avoids binary rewriting
 - Minimize number of privilege transitions into Xen
 - Shared data structures: read CR2, CLI/STI
 - Batched operations: bulk mmu updates
 - Modifications to Linux are relatively simple and self-contained
- Modify kernel to understand virtualized env.
 - Wall-clock time vs. virtual processor time
 - Xen provides both types of alarm timer
 - Expose real resource availability
 - Enables OS to optimise its own behaviour
Xen 3.0 Architecture

- **VM0**: Device Manager & Control s/w, GuestOS (XenLinux)
- **VM1**: Unmodified User Software, GuestOS (XenLinux)
- **VM2**: Unmodified User Software, GuestOS (XenLinux), SMP

- **Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)**
- **Front-End Device Drivers**
- **Native Device Driver**
- **Safe HW IF**
- **Event Channel**
- **Virtual CPU**
- **Virtual MMU**

- Support for various architectures:
 - x86_32
 - x86_64
 - IA64
 - PPC
 - VT-x
 - SVM
 - VT-i
Protection: x86_32

- Xen reserves top of VA space
- Segmentation protects Xen from kernel
- System call speed unchanged
- Xen 3 now supports PAE for >4GB mem
Protection: x86_64

- Large VA space makes life a lot easier, but:
- No segment limit support
- Need to use page-level protection to protect hypervisor
Protection: x86_64

- Run user-space and kernel in ring 3 using different pagetables
 - Two PGD’s (PML4’s): one with user entries; one with user plus kernel entries
- System calls require an additional syscall/sysret via Xen
- Per-CPU trampoline to avoid needing GS in Xen
CPU virtualization: x86

- Xen runs in ring 0 (most privileged)
- Ring 1/2 for guest OS, ring 3 for user-space
 - #GP if guest attempts to use privileged instruction
- Xen lives in top 64MB (168MB PAE) of linear address space
 - Andrew has patch queued to allow Linux to make room for Xen
 - Segmentation used to protect Xen as switching page tables too slow on standard x86
- Hypercalls jump to Xen in ring 0
- Linux may install an int80 handler, Xen validates the code segment is ring 1
 - Direct user-space to Linux guest system calls
- Interrupts are handled by Xen, Linux guest uses a lightweight event channel mechanism
- MMU virtualization: shadow vs. direct-mode
MMU Virtualization: x86 Shadow Mode

- Linux guest maintains set of page tables
- Xen hypervisor maintains shadow copy
- Shadow copy is visible to hardware MMU
- Xen propagates changes between guest PT and shadow PT
- Expensive: can double page fault rates and has extra memory overhead
- Simpler for guest: Can view physical memory as contiguous, no need to maintain a mapping between guest pseudo physical memory and machine physical memory, and needed for full virtualization
MMU Virtualization: x86 Shadow Mode

- Guest reads and guest writes
- Accessed & dirty bits
- Updates
- Virtual
- Pseudo-physical
- Guest OS
- Machine
- VMM
- Hardware
- MMU
MMU Virtualization: x86 Direct Mode

- Linux guest maintains page tables that are visible to MMU
- Linux guest registers pages it will use as page tables with Xen
 - These pages can be one of PD, PT, GDT, LDT, RW (mutually exclusive).
 - Once Xen has pinned a page as a PD or PT it does not need to be revalidated, only updates to it need to be checked (writes will trap).
- Linux uses hypercall to change PT base (e.g. context switch).
- Xen validates page table updates before committing them.
 - Allows incremental updates, avoids revalidation
- Validation rules applied to each PTE:
 1. Guest may only map pages it owns*
 2. Page table pages may only be mapped RO
- Xen traps PTE updates and emulates, or ‘unhooks’ PTE page for bulk updates
MMU Virtualization: x86 Direct Mode

guest reads

guest writes

Virtual Machine

Guest OS

Xen VMM

Hardware

MMU
Writable Page Tables: 1 – Write Fault

guest reads

first guest write

page fault

Virtual Machine

Guest OS

Xen VMM

Hardware

MMU
Writable Page Tables: 2 – Emulate?

- Guest reads
- First guest write
- Guest OS
- Virtual Machine
- Xen VMM
- Hardware
- MMU
- Yes, emulate?
Writable Page Tables: 3 – Unhook

guest reads

guest writes

Virtual Machine

Guest OS

Xen VMM

Hardware
Writable Page Tables: 4 – First Use

guest reads

guest writes

page fault

Virtual Machine

Guest OS

Xen VMM

Hardware

MMU
Writable Page Tables: 5 – Re-hook

- guest reads
- guest writes
- validate

Virtual Machine
Guest OS
Xen VMM
Hardware

MMU
SMP Guests

- Virtual IPI handled with Xen event channels
 - Important to avoid sending virtual IPI when not necessary
- 32 VCPUs supported on x86
- Simple hotplug/unplug of VCPUs
 - From within VM or via control tools
 - Optimize one active VCPU case by binary patching spinlocks (patch is now in upstream Linux)
I/O Virtualization

Xen IO-Spaces delegate guest OSes protected access to specified h/w devices

- Virtual PCI configuration space
- Virtual interrupts
- (Need IOMMU for full DMA protection)

- Devices are virtualized and exported to other VMs via Device Channels
 - Safe asynchronous shared memory transport built from grant tables and event channels
 - ‘Backend’ drivers export to ‘frontend’ drivers
 - Net: use normal bridging, routing, iptables
 - Block: export any block device e.g. sda4,loop0,vg3

- (Infiniband / Smart NICs for direct guest IO)
Full Virtualization: HVM (VT-x, SVM)

- Enable Guest OSes to be run without para-virtualization modifications
 - E.g. legacy Linux, Windows XP/2003
- CPU provides traps for certain privileged instrs
- Shadow page tables used to provide MMU virtualization
- Xen provides simple platform emulation
 - BIOS, Ethernet (ne2k), IDE emulation
- (Install paravirtualized drivers after booting for high-performance IO)
Xen Status

- Xen 3.0.0
 - Released January 2006
 - SMP support (SMP hardware and SMP guests)
 - Working ACPI (moved from hypervisor to dom0), Hypervisor time APIs
 - x86_64 (Opteron and EM64T), PAE support (>4 Gb), basic IA64

- Xen 3.0.1
 - Feb 1, 2006
 - Primarily bugfixes and code cleanups

- Xen 3.0.2
 - April 13, 2006
 - HVM now supports VT and SVM
 - 2.6.16 kernel with proper subarch support

- Xen 3.0.x
 - Better driver domains, NUMA support, possible IDC enhancements
XenLinux Merge Status

- **Scope of work**
 - i386 only
 - UP only
 - domU only
 - shadow mode only
 - Limited scope reduces size, complexity, and invasiveness of the patchset.

- **Community response**
 - Useful feedback for improving the patchset that has resulted in cleanups which are being propagated back to the xen-unstable development tree
 - Some small bits have been taken by Andrew for upstream Linux
XenoLinux Merge Status – Patchset details

- ~35 patches, ~1.6MB
- 114 files changed, 13522 insertions(+), 350 deletions(-)
- Creates new i386 subarch: arch/i386/mach-xen
- Updates infrastructure to allow a subarch to override default behaviour for:
 - Start-of-day
 - Segments (running in ring 1)
 - Descriptor table handling: GDT, LDT, IDT
 - Control register handling: CR0, CR1, CR2, CR3, CR4
 - CPUID
 - Interrupt handling
 - TLB handling
 - Memory and page table handling
 - Idle loop
XenLinux Merge Status – Patchset details

- Adds core Xen functionality for:
 - Hypervisor interface
 - Time
 - Reboot
 - Event channels
 - Grant tables
 - Xenbus
 - Console
 - Frontend block and net drivers
XenLinux Merge Status – Related Work

- VMI proposal from VMWare
 - Common binary interface layer for hypervisors
 - Pros: Resembles native platform, good native performance, easy to change hypervisors without changing kernels.
 - Cons: Strict ABI, low-level interface may have poorer paravirt performance, no users, requires extra glue layer (the ROM).

- paravirt_ops from Rusty Russell
 - Common paravirt function table interface for hypervisors. Similar to VMWare proposal with focus on standard Linux coding practices. Provides an internal kernel API rather than forcing ABI.
 - Pros: Follows common conventions, draws from good aspects of VMI
 - Cons: Early work, still needs to be flushed out, no users
XenLinux Merge Status – Future Work

- Continue to respond to feedback from LKML
- Repost as ready
- Cleaner patch split so that we can easily feed the non-confrontational patches to Andrew. Much of the infrastructure changes are the same for Xen, VMI and paravirt_ops.
- Follow-on work
 - SMP support
 -Writable page tables support
 - dom0 support
 - Other architectures (x86_64, ia64, PPC)
Xen Roadmap

- Performance and scalability
 - Fix any performance regressions from Xen 2.0, NUMA support
- IOMMU support
- Get Xen upstream ;-
- Improved resource control
 - Fine grained delegations, dynamic VCPU to CPU binding
- Network drivers support for S/G and TSO/UFO
- HVM improvements
 - Shadow page table improvements
 - QEMU: VNC Server, USB Mouse, Virtual Framebuffer
 - SMP HVM guests
 - New I/O model for HVM guests
- And much, much more. Come join in the fun!