
Docker Containers for
Legal Professionals
Armijn Hemel, MSc – version 2020-04-01-1

www.linuxfoundation.org

The Linux Foundation2Docker Containers for Legal Professionals

Table of contents ... 2

Introduction ... 3

Historical perspective on docker 4

Separation .. 4
Hardware virtualization/emulation ... 5
Hypervisors .. 5
Hybrids.. 5

Docker container technology deep dive 5

Containers and images: what is the difference? 6
Docker layers ... 6
Process for deploying a docker container .. 7
 Creating or downloading a docker image ... 7
 Loading a docker image .. 7
 Creating a docker image using a “dockerfile” 7
 “Hello world!” Example .. 8
 Creating a docker image.. 8
 Searching and downloading docker images 9
 Creating a docker container ... 10
 Running a docker container .. 11
Docker repositories and registries ... 11
 Configuring repositories to search .. 12
 Fetching images from a repository.. 12
 Publishing images in a repository .. 12
Docker on-disk representation ... 12
 Full docker image .. 15

License compliance questions
for docker containers .. 16

What software is distributed? ... 16
 Distributing a full image .. 17
 Distributing a recipe to build a container image 18
Who distributes the software? ... 18
The license of dockerfiles versus software inside containers 19
Compliance for all layers, not just the final layer 19
How to collect and publish the required source code? 21

License compliance checklist for docker 21

Is any software distributed? .. 21
What software is distributed? ... 21
How is the software distributed? ... 21
Who is distributing the software? .. 21

Existing tools and other research 22

Conclusion ... 23

Table of Contents

About the Author
Armijn Hemel, MSc, is the
owner of Tjaldur Software
Governance Solutions. He is
an active researcher of and
internationally recognized
expert in open source license
compliance and supply chain
management. He studied
computer science at Utrecht
University in The Netherlands,
where he pioneered
reproducible builds with NixOS.
In the past he served on the
board of NLUUG and was a
member of the coreteam of
gpl-violations.org. Currently
he is a board member at NixOS
Foundation and creates tools
for and documentation about
license compliance.

http://gpl-violations.org

The Linux Foundation3Docker Containers for Legal Professionals

Introduction
Deployment, distribution, and execution of software and especially services have significantly
changed in the last few years. A few years ago, a person had to install a Linux® based distribution
with the necessary software and dependencies — these days, it is now much more common to
“spin up a container” and run a service. A container is basically nothing more than one or more
applications with all dependencies, data, and configuration in a single isolated environment that
can be deployed without the need to buy a new system or create a virtual machine. A typical use
case would be to isolate services from each other.

There are many tools that make it easy to deploy many containers at once for very short-lived or very long-lived
tasks. These tools have simplified the task of installing and configuring software. Containers take away the burden
of preparing a machine and installing, configuring, and maintaining software packages.
The goal of this article is to shed light on one of these technologies, namely the docker run-time container engine
popularized by Docker®, Inc.

Docker has had a significant impact on the popularity of containers and made it much simpler on the technological
side of things, but on the legal side, there are potentially increased complexities. For example, using containers
makes it easier for developers to deploy software, but it also makes it easier to deploy (sometimes inadvertently)
the wrong thing. Docker hides many of the implementation details, and developers might end up unknowingly
shipping all kinds of software without knowing the license compliance issues that occur as a result.

By making it easy to obtain, build on top of, and deploy containerized software, distribution of software can
bypass compliance processes that a company might have in place for more traditionally-distributed products and
services. The focus of this article will be on analyzing what the compliance challenges are and how to prepare for
and remedy these challenges. The article will touch on how to manage, start, or run a container, to the extent it is
relevant for understanding the compliance implications.

This is not meant as the definitive guide about license compliance for containers. Instead, it is meant as a starting
point for a more informed discussion about how container compliance should be achieved. There are gaps and
likely also errors in this document.

The Linux Foundation4Docker Containers for Legal Professionals

There are many tools that make it easy to deploy many containers at once for very short-lived or very long-lived
tasks. These tools have simplified the task of installing and configuring software. Containers take away the burden
of preparing a machine and installing, configuring, and maintaining software packages.
The goal of this article is to shed light on one of these technologies, namely the docker run-time container engine
popularized by Docker®, Inc.

Docker has had a significant impact on the popularity of containers and made it much simpler on the technological
side of things, but on the legal side, there are potentially increased complexities. For example, using containers
makes it easier for developers to deploy software, but it also makes it easier to deploy (sometimes inadvertently)
the wrong thing. Docker hides many of the implementation details, and developers might end up unknowingly
shipping all kinds of software without knowing the license compliance issues that occur as a result.

By making it easy to obtain, build on top of, and deploy containerized software, distribution of software can
bypass compliance processes that a company might have in place for more traditionally-distributed products and
services. The focus of this article will be on analyzing what the compliance challenges are and how to prepare for
and remedy these challenges. The article will touch on how to manage, start, or run a container, to the extent it is
relevant for understanding the compliance implications.

This is not meant as the definitive guide about license compliance for containers. Instead, it is meant as a starting
point for a more informed discussion about how container compliance should be achieved. There are gaps and
likely also errors in this document.

Historical perspective on docker
While containers have become much more prominent in the last few years, they have a long history dating as far
back as the IBM® mainframes of the 1960s. The full history of these technologies is out of scope for this article, but
it is useful to look at a few of the core concepts in the context of Unix(-like) systems.

Besides containers, there are a few different technologies that are sometimes confused with containers, such as
virtualization and hypervisors. These will only be mentioned briefly but not looked at in-depth.

1. https://deepsec.net/docs/Slides/2015/Chw00t_How_To_Break%20Out_from_Various_Chroot_Solutions_-_Bucsay_Balazs.pdf

2. FreeBSD handbook, chapter 14 https://www.freebsd.org/doc/handbook/jails.html

https://deepsec.net/docs/Slides/2015/Chw00t_How_To_Break%20Out_from_Various_Chroot_Solutions_-_Bucsay_Balazs.pdf
https://www.freebsd.org/doc/handbook/jails.html

The Linux Foundation5Docker Containers for Legal Professionals

In this section, the following concepts will be briefly explained:

•	Separation and isolation: The processes of one user on a shared physical system should not interfere with and
should be invisible to processes run by other users on the system. Containers are the logical extension of this.

•	Hardware virtualization: Implementations of CPUs and peripherals in software to allow the creation of virtual
machines on a single physical system

•	Hypervisor: A program controlling virtual machines (start, stop, pause, snapshots, restore, and so on)

Separation

Beginning in 1979 the so-called chroot (“change root”) system call was added to various Unix systems. With this
mechanism, processes can be partially isolated from each other by only being able to access specific parts of the
file system. In essence, a specified directory is set to be the “root directory” for the process, and anything outside
of that directory, except subdirectories, cannot be accessed. This mechanism is typically used to isolate processes
that the outside world has access to and which are running with special privileges, for example, superuser
privileges. A very typical use case for chroot is to isolate FTP servers supporting “active FTP,” where specific
network ports need to be opened that require superuser privileges.

The isolation provided by chroot is partial and only covers the file system, but all other resources in the operating
system are still shared. Errors in the operating system could allow an attacker to possibly break out of a chroot
environment and access other parts of the system1.

The FreeBSD project improved upon chroot and created FreeBSD jails2 which extended this separation to processes
as well as the network stack, allowing each jail to have its IP address.

Linux containers took this concept further, providing even more separation. Docker is the dominant technology for
Linux-based containers and consists of a set of tools to create, deploy, and manage containers.

Docker also has overlap with software configuration management (SCM) programs and tools (examples: cfengine,
Puppet, Ansible) but differs from these because it operates in the context of containers.

Hardware virtualization/emulation

On the other end of the spectrum is hardware virtualization software that emulates a complete system (CPU,
peripherals) in software. In these emulators, it is possible to install an operating system as if it were installed on a
physical machine. A well-known example is the original VMware® product that emulated the Intel® PC architecture

3. https://xenproject.org/

https://xenproject.org/

The Linux Foundation6Docker Containers for Legal Professionals

and which would allow people to install other operating systems and work with them, for example, install Linux
inside a VMware virtual machine running on Microsoft® Windows, or vice versa.

Other well-known programs that provide hardware virtualization are Bochs (x86), QEMU (various hardware
architectures), and Oracle’s VirtualBox®.

On Linux, there are also many emulators available, such as for several gaming devices (e.g., Nintendo® Gameboy®
and Gamecube®), as well as old home computers (e.g., Apple®] [, Commodore 64®), in which hardware has been
partially or completely reimplemented in software.

Hypervisors

Hypervisors are specialized operating systems (either custom or based on a minimalistic version of Linux) that
control and manage the launch of virtual machines. A well-known hypervisor is Xen Project®3.

A difference between Docker and hypervisors is that Docker manages Linux containers (each of which is a program,
with its run time dependencies), whereas hypervisors manage entire virtual machines, each with an entire
operating system.

Hybrids

The techniques described are not mutually exclusive. It is very well possible to have a hypervisor managing multiple
virtual machines running an operating system on which containerized applications have been deployed, so in
practice, you can find them used next to or on top of each other.

Docker container technology deep dive
Unfortunately, the term “Docker” is suffering a bit from overload: the technology is called Docker, the company that
created it is called “Docker, Inc.” and the program that is used to create and deploy containers is called Docker. In
this article, it should be clear from the context which is used. If not, it is explicitly mentioned.

4. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736

The Linux Foundation7Docker Containers for Legal Professionals

Similar to what Git has done for version control, Docker technology has vastly simplified and democratized creation
and deployment of so-called “containerized applications.” A Docker “containerized application” is a self-contained
environment that contains all of the dependencies and data (shared libraries, programs, configuration files, etc.)
that an application would require to run. This methodology allows a strict separation between applications and
processes and means that if one application gets compromised the others should not be affected (unless there are
errors in the underlying technology4).

Environments can use different distributions/versions per container. For example, one container could be based
on Fedora, while another one could be based on SUSE, or Debian, or a custom solution. There are benefits to this
approach (there can be subtle differences between distributions, and running software in an environment that is
known to work reduces headaches) but also potential downsides (possibly running many different environments,
complicating maintenance).

Containers and images: what is the difference?

In articles and documentation about Docker, there are frequent references to “containers” and “images.” These are
not the same, although sometimes used interchangeably in articles or conversations. There is a very fundamental
difference: an image is the on-disk collection of software, while a container is a running instance of an image,
together with run time data and run-time state.

An example image could contain the Apache webserver and all its dependencies, from which a container can
be instantiated and run. An image can be instantiated multiple times: these would then all become separate
containers.

The Linux Foundation8Docker Containers for Legal Professionals

IMAGE

MyApp
Apache httpd
Debian

MyApp
Runtime data

Apache httpd
Debian

MyApp
Runtime data

Apache httpd
Debian

Images can be made available for reuse in public or private repositories, where they can be searched for and
downloaded to be reused.

Docker Layers

Each Docker image consists of one or multiple layers that are stacked on top of each other. Some of the layers
contain files (programs, files, etcetera); others are meta-layers modifying existing layers. Different images can, and
often do, share layers. For example, if two images are both based on a specific Debian layer, then this layer will only
be stored on disk once.

If an existing image is reused (for example: downloaded from a repository) and modifications are made, then these
modifications are stored as one or more separate layers on top of the existing layers in the image. All the layers
of the base image and the new layer with the modifications together form a new image that can be instantiated
(to create a container) or exported to be distributed or made available in a repository. A Docker image could be as
pictured below: a base image with four base layers (building on top of each other), and a custom layer on top.

Layer 4
Custom Layer

Layer 3
Layer 2
Layer 1

Base
Layers{

5. https://docs.docker.com/engine/reference/builder/

6. Docker is limited to Linux and Linux commands. Although it is possible to run Docker on other operating systems, this is implemented by
using a small Linux system in a virtual machine.

https://docs.docker.com/engine/reference/builder/

The Linux Foundation9Docker Containers for Legal Professionals

As explained before: a container instance is not the same as a Docker image, as the container instance also
contains run-time data. The run-time data is stored separately in a data layer.

Process for deploying a docker container

Deploying a Docker container comprises the following steps (installing “docker” and related programs is out of
scope for this article, as details are specific to your Linux distribution):

1.		Creating or downloading a Docker image
2. 	Creating a container instance from the image
3. 	Running the Docker container

Docker images and containers can be searched, created, deployed, and managed (started, stopped, etc.) using the
docker tool. There are also complete container orchestration solutions, such as Kubernetes. In this article, these are
ignored for the sake of simplicity.

Creating or downloading a docker image

The first step in deploying a Docker container is to create or download a Docker image. This can be done in three
different ways:

1.		An image can be built from scratch, or
2.			A complete image with all the layers can be loaded into the Docker run time, or
3.			An image can be assembled “on the fly” by Docker using a combination of recipes and base images (typical use

case), i.e., using a Dockerfile

In practice, method 1 is hardly used, except for bootstrapping and creating a base image, and most people use either
method 2 or method 3, with method 3 being used the most. These two will be described below.

Loading a docker image

A complete image contains all the layers and meta information that is needed by Docker and is loaded into the
Docker run time by running the command “docker load.” One possible use case of this method would be to install
the image on computers not connected to the Internet.

The Linux Foundation10Docker Containers for Legal Professionals

Creating a docker image using a “dockerfile”

The most common way to create and load images is by using a so-called Dockerfile. A Dockerfile is a file with
instructions that describes how to assemble a Docker image. The docker tool reads these instructions and executes
them to assemble a Docker image.

A Dockerfile is read to build an image, which in turn can then be used to instantiate a container:
IMAGEDOCKER FILE RUNNING CONTAINER

MyApp
Debian

MyApp
Runtime data

debian

MyApp
Runtime data

debian

MyApp
Runtime data

debian

FROM Debian
CMD /bin/echo
.
.
.

docker
build

docker
run

Each of these steps is described in more detail below.

Although Docker defines a limited set of instructions5 that can be used in a Dockerfile; in practice, there is no
limitation to what these instructions can do because any Linux shell command can be run as part of an instruction6.
Typically a Dockerfile contains instructions about what base image to use, what software to install, which
commands to run, and so on.

“Hello World!” Example

A “Hello World!” Dockerfile based on Debian that prints the words “Hello World!” could look like this (line numbers
added for clarity):

The Linux Foundation11Docker Containers for Legal Professionals

1 FROM debian
2
3 CMD [“/bin/echo”, “Hello World!”]

This file has two instructions: line 1 tells Docker to base the container image on a Debian base image, and line 3 to
launch the command /bin/echo and print “Hello World!”. Each of these commands is stored in a separate layer.

Creating a Docker Image

The image can be created using the docker build command, which gives the following output (line numbers added
for clarity):

1 $ docker build docker/

2 Sending build context to Docker daemon 2.048 kB

3 Step 1/2 : FROM debian

4 Trying to pull repository docker.io/library/debian ...

5 sha256:d986a531d62903b66e731d475988f5b2ba3a4a90078078cb0f29f9685ee36466: Pulling

6 from docker.io/library/debian

7 dc65f448a2e2: Pull complete

8 Digest: sha256:d986a531d62903b66e731d475988f5b2ba3a4a90078078cb0f29f9685ee36466

9 Status: Downloaded newer image for docker.io/debian:latest

10 ---> a8797652cfd9

11 Step 2/2 : CMD /bin/echo Hello World!

12 ---> Running in 0eb4b6b18619

13 ---> 58a63e12e394

14 Removing intermediate container 0eb4b6b18619

15 Successfully built 58a63e12e394

Line 1 is the command that is typed in and executed. On lines 2-9, it can be seen that the Docker daemon (the
central program that helps manage containers and images) downloads a Debian base image from a repository
(in this case, the central Docker repository) and stores the layer on disk (line 10). This corresponds to the first
instruction in the Dockerfile (namely the line “FROM debian”).

The Linux Foundation12Docker Containers for Legal Professionals

On lines 11 – 13, the layer for executing the CMD command (line 3 in the Dockerfile) is created and stored
separately.

As already discussed, Docker images are modular and can be built upon other images or by reading a stack of
Dockerfile files and corresponding images (which might, or might not, be assembled “on the fly” as well).

From a developer standpoint, this is very convenient, as they only need to focus on their application and not on the
boilerplate code, which will likely be shared between many containerized applications. Often developers will have a
library of Dockerfile files or templates that they will reuse.

Searching and Downloading Docker Images

There are two ways to install containerized applications with Docker:

1. 				Install from a Docker repository with images (example: official Docker docker.io repository)
2.			Download an image and load it separately (already covered in the previous sections)

Docker (the company) has an extensive repository of “official images” called docker.io, which can be searched in a
registry using Docker (the tool). As an example, the official Docker image for Nextcloud can be found by using the
following command (formatted output edited for clarity):

$ docker search nextcloud

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED

docker.io docker.io/nextcloud A safe home for all your data 544 [OK]

docker.io docker.io/nextcloud A safe home for all your data 544 [OK]

docker.io docker.io/linuxserver/nextcloud A Nextcloud container, brough ... 72

docker.io docker.io/linuxserver/nextcloud A Nextcloud container, brough ... 72

docker.io docker.io/greyltc/nextcloud Nextcloud: a safe home for al ... 36 [OK]

docker.io docker.io/greyltc/nextcloud Nextcloud: a safe home for al ... 36 [OK]

docker.io docker.io/wonderfall/nextcloud All-in-one alpine-based Nextc ... 36 [OK]

docker.io docker.io/wonderfall/nextcloud All-in-one alpine-based Nextc ... 36 [OK]

The Linux Foundation13Docker Containers for Legal Professionals

The image can then be installed from the repository using docker (the tool):

$ docker pull docker.io/nextcloud

Using default tag: latest

Trying to pull repository docker.io/library/nextcloud ...

sha256:55f042577e61f3ce826476a29aa77435e61707abc88f3665d415c519cca85c13: Pulling from docker.io/library/
nextcloud

be8881be8156: Downloading [=============================>] 19.79 MB/22.49 MB

69a25f7e4930: Download complete

65632e89c5f4: Downloading [===============>] 20.43 MB/67.43 MB

after which it can be instantiated and run.

Other repositories also exist, and on systems such as Fedora, some will be preconfigured in the Docker
configuration file.

Searching for an image is similar to, for example, searching a package using dnf on Fedora, apt-cache on Debian,
or other package management systems such as Python’s pip, NuGet, and others. By running docker search7 or
docker pull8 all configured repositories are automatically searched. If “docker search” cannot find an image, it will
report that nothing can be found:

$ docker search fbbbrrrtzzzz
INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED

When using docker pull, an error will be displayed instead:

$ docker pull fbbbrrrtzzzz

Unable to find image ‘fbbbrrrtzzzz:latest’ locally

Trying to pull repository docker.io/library/fbbbrrrtzzzz ...

Trying to pull repository registry.fedoraproject.org/fbbbrrrtzzzz ...

7. https://docs.docker.com/engine/reference/commandline/search/

8. https://docs.docker.com/engine/reference/commandline/pull/

https://docs.docker.com/engine/reference/commandline/search/
https://docs.docker.com/engine/reference/commandline/pull/

The Linux Foundation14Docker Containers for Legal Professionals

Trying to pull repository quay.io/fbbbrrrtzzzz ...

Trying to pull repository registry.access.redhat.com/fbbbrrrtzzzz ...

Trying to pull repository registry.centos.org/fbbbrrrtzzzz ...

Trying to pull repository docker.io/library/fbbbrrrtzzzz ...

repository docker.io/fbbbrrrtzzzz not found: does not exist or no pull access

Creating a Docker Container

An instance is created using the command docker create. The manpage (short for manual page) of the docker
create command says the following:

Creates a writeable container layer over the specified image and prepares it for running the
specified command.

The “docker create” command takes a few parameters as can be seen in the (heavily cut) help text for the command:

$ docker create --help

Usage: docker create [OPTIONS] IMAGE [COMMAND] [ARG...]

The important parameter is “IMAGE.” To find out which images are available on the local system, the command
docker image list can be used:

$ docker image list
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 58a63e12e394 About a minute ago 114 MB
docker.io/debian latest a8797652cfd9 3 days ago 114 MB

The IMAGE ID value is what will be used by docker create. The “Hello World” container that was built earlier has
the image id 58a63e12e394 (lines 13 and 15 of the build log). The Debian image it is built on can also be found in the
image list and has an image id corresponding to the build log (line 10).

The Linux Foundation15Docker Containers for Legal Professionals

Creating a docker container can be done as follows:

$ docker create 58a63e12e394

34590ba2e6271640a0c26e066afbeb7acf42dabb0ac0a779babedc97f18e1249

This command outputs a container identifier.

The result is the identifier of a container, which is an instance of an image. The status of the containers can be
shown using the docker ps -a command (output edited for clarity):

$ docker image list
CONTAINER ID IMAGE COMMAND CREATED STATUS
34590ba2e627 58a63e12e394 “/bin/echo ‘Hello ...” 28 seconds ago Created

In the output, the container ID is shown (abbreviated), as well as the image identifier.

Running a docker container

The Docker container can be started using the “docker start” command using the Docker container ID:

$ docker start 34590ba2e627
34590ba2e627

In this case, nothing much happens, but anything that is logged can be found in the container logs:

$ docker logs 34590ba2e627Hello World!

Of course, this is just a straightforward Docker container and deployed using the simplest tools. Whole
orchestration suites have evolved around containers, such as Kubernetes, which allow deployment and
management of many containers on many platforms.

The Linux Foundation16Docker Containers for Legal Professionals

Docker repositories and registries

Docker images can be retrieved from repositories. Apart from the already introduced docker.io repository
(run by Docker) there are also other repositories, such as quay.io, which is run by Red Hat. Community projects
such as Fedora and CentOS also have public repositories, and there are many running their private repositories
of Docker images.

Configuring repositories to search

In a default Docker installation, the repositories from Docker will be searched, but the Docker configuration can be
changed to use different repositories. As an example, on a current Fedora Linux system the following repositories
are defined (in /etc/containers/registries.conf):

docker.io
registry.fedoraproject.org
quay.io
registry.access.redhat.com
registry.centos.org

On other distributions, other repositories might be configured. Companies might also have their own (internal)
repositories. Depending on the configuration of the repositories, different images might be found, as different
repositories might have overlapping names for images.

Fetching images from a repository

When an image is pulled from a repository (using, for example, docker pull), not all data is necessarily
downloaded: if some layers are already present on a system, these will not be redownloaded. Metadata (describing
the layers) will always be downloaded.

The Linux Foundation17Docker Containers for Legal Professionals

Publishing images in a repository

Apart from downloading images from a repository, they can also be published on a repository using the docker
push command9. Depending on the version of Docker and the Docker API either the full image with all layers will
be uploaded, or unique layers (i.e., those not already present in the repository where the “push” is directed) will be
uploaded10.

Docker on-disk representation
Although container images are typically intended to be treated as hermetically-sealed units, they can be
analyzed just like any other software stored on disk. This type of analysis can be useful in understanding the
compliance implications for using, distributing, and otherwise working with a particular container image or an
individual image layer.

When a Docker image is installed, its contents can be inspected. The locations on a Linux machine where these
images are installed can differ per installation, but typically the images are in a system directory. On a default
install on Fedora Linux, you will, for example, find it in /var/lib/docker.

At first glance, it is difficult to find out where the data of a container exactly resides on the disk, as there are
multiple directories where data is stored. In this section, the standard Docker “Hello World!” example (note: this is
not the same as the earlier “Hello World!” example!) will be dissected. To better understand these concepts, it is
recommended to not just read through this section, but to actually perform the steps.

The first step is to pull the image from the online registry:

$ docker pull hello-world

Using default tag: latest

Trying to pull repository docker.io/library/hello-world ...

sha256:0add3ace90ecb4adbf7777e9aacf18357296e799f81cabc9fde470971e499788: Pulling from docker.io/library/
hello-world

d1725b59e92d: Pull complete

Digest: sha256:0add3ace90ecb4adbf7777e9aacf18357296e799f81cabc9fde470971e499788

9. https://docs.docker.com/engine/reference/commandline/push/

10. https://forums.docker.com/t/why-does-docker-push-base-image-layers-that-are-already-on-docker-hub/2329/7

https://docs.docker.com/engine/reference/commandline/push/
https://forums.docker.com/t/why-does-docker-push-base-image-layers-that-are-already-on-docker-hub/2329/7

The Linux Foundation18Docker Containers for Legal Professionals

Status: Downloaded newer image for docker.io/hello-world:latest

Using the docker pull command, the hello-world container image is downloaded from the registry, unpacked
onto disk, and added to the list of locally available images. The locally available images can be found in the file
image/overlay2/repositories.json:

{

 “Repositories” : {

 “docker.io/hello-world” : {

 “docker.io/hello-world:latest” :
“sha256:4ab4c602aa5eed5528a6620ff18a1dc4faef0e1ab3a5eddeddb410714478c67f”,

 “docker.io/hello-world@sha256:0add3ace90ecb4adbf7777e9aacf18357296e799f81cabc9fde470971e499
788” : “sha256:4ab4c602aa5eed5528a6620ff18a1dc4faef0e1ab3a5eddeddb410714478c67f”

 }

 }

}

In this file, it says that for the repository docker.io/hello-world one image is available, which is made available
under two names: latest and a SHA256 digest. The digest is the same as the value of “Digest” that was printed
when the entry was pulled (in this case 0add3ace90ecb4adbf7777e9aacf18357296e799f81cabc9fde470971
e499788), as only one version of the image was pulled from the repository.

In the file repositories.json file it can be seen that the digest points to another SHA256 hash
(4ab4c602aa5eed5528a6620ff18a1dc4faef0e1ab3a5eddeddb410714478c67f). In the directory
image/overlay2/imagedb/content/sha256/ a file with this particular hash as its name can be found.

This file, which is another JSON file, describes the image in much more detail, including:

•	Creation date
•	Architecture
•	History of commands used to create the container
•	The list of layers
•	Etc.

which provides a good starting point for a thorough analysis.

The Linux Foundation19Docker Containers for Legal Professionals

The list of layers that store the content is the most interesting, as these describe what is actually used by the
container. The list of all layers used (but not how they are stacked) can be found in the JSON file in the element
rootfs:

“rootfs” : {

 “type” : “layers”,

 “diff_ids” : [

 “ sha256:428c97da766c4c13b19088a471de6b622b038f3ae8efa10ec5a37d6d31a2df0b”

]

In this case, there is only one layer, as it is a simple container. In other containers, there could be many more layers.
Each layer is referred to by yet another SHA256.

For images installed via a Docker registry, a file with the SHA256 value for each layer is created in image/overlay2/
distribution/v2metadata-by-diffid/sha256 with the same name as the SHA256. This file is a JSON file that
contains some more information, including for example the origin of the layer:

[

 {

 “ SourceRepository” : “docker.io/library/hello-world”,

 “HMAC” : “”,

 “ Digest” : “sha256:d1725b59e92d6462c
6d688ef028979cc6bb150762db99d18dddc
7fa54b82b0ce”

 }

]

For images that are loaded from a complete image file, these files are possibly not present, as they are not
necessarily coming from an online repository, so depending on the setup, these files could be missing.

In the directory image/overlay2/layerdb/sha256/ there are directories for each of the layers. Inside these
directories there are a number of files:

The Linux Foundation20Docker Containers for Legal Professionals

cache-id
size
tar-split.json.gz
diff
parent

where the file diff contains the SHA256 of the layer, and the file parent is not present for the first layer. For the
other layers, it contains the hash of the parent layer, and by following the parent hashes for each parent layer, it is
possible to find how the layers are stacked. For “hello world,” there is just one layer, so the file parent is missing.

The file cache-id contains yet another SHA256 checksum (e12deaf42bcd370442e87e06ded3f86efaa21c
c4014ae57afeb462980e8ffb6d in this particular install that was tested with, but it will differ per install). A directory
with the same name can be found in the directory overlay2. The subdirectory diff has the actual contents of the
layer:

$ ls -l ./overlay2/e12deaf42bcd370442e87e06ded3f86efaa21cc4014ae57afeb462980e8ffb6d/diff/

total 4

-rwxrwxr-x 1 root root 1840 Sep 7 21:25 hello

The file size contains the size of the layer. This file contains just a single value, and in this case, it is 1840, which is
the same as the size of the hello executable.

As can be seen, there are lots of indirections to get to the final data that is used in a Docker container, but it is
relatively easy to automate this analysis.

Full docker image

A full Docker image can be exported and distributed using docker save. The result of this command is a tar
archive, one directory per layer, plus associated metadata files that correspond to the metadata of the on-disk
representation:

manifest.json

repositories

<hash>.json

where the third file can have a different name every time, as it contains a cryptographic hash in the file name.

The Linux Foundation21Docker Containers for Legal Professionals

License compliance questions
for docker containers
At its core, license compliance for Docker images and containers is no different from compliance for software
distributed via other media, such as firmware for routers or phones, or a CD, so your existing analyses on whether the
software is “distributed” can continue to apply. There are a few aspects to it that can make it a lot more complicated,
such as the fact that assembling Docker images is not reproducible because it depends on the configuration of which
docker repositories are searched and the state of those repositories at a particular point in time.

When looking at license compliance for Docker containers, it is essential to take the following
into account:

1. What is distributed?
2. Who distributes the software?
3. The license of Dockerfile files versus software

inside containers
4. Compliance for all layers, not just the final layer

5. How to collect and publish the required source code?

What software is distributed?

Because there are a few different distribution mechanisms of software with Docker containers, there is no single
answer to the question, “how should I comply with license conditions?”. In this section, the following scenarios will
be looked at:

1. Distributing a full image

2. Distributing a Dockerfile file (the “recipe” used to build a container image)

The Linux Foundation22Docker Containers for Legal Professionals

A running container cannot be easily distributed, because it is the actual instantiation of an image that is currently
executing. But images from which containers are instantiated, and Dockerfile “recipes” used to build images, are
distributed.

Distributing a full image

Distributing a full image is not any different from distributing a CD with the software on it, or a wireless router with
software installed on flash memory. Therefore, it is important to understand what software is actually distributed,
which means that the contents of the image need to be inspected.

When inspecting the contents of the image, it is essential to realize that the image that users interact with is simply
a view of all layers, and during run-time, only the final view is seen. This view will possibly not show all of the
software that is inside all of the layers: each layer can modify the view, but it will not change the content stored in
any of the underlying layers.

Top Layer
Modify Files B+C

B1 C1

Intermediate Layer
Delete Files F, G + HX X X

Base Layer
E F G H

A B C D

IMAGE

It could be that one layer installs software, and a new layer overwrites the software with another version (possibly
with another version under a different license). In the final view, users see that the older software seems to
have been removed, but in the underlying layer, the original software will still be present. For example, with the
representation of a container image shown above, a user of the image would only “see” the following:

The Linux Foundation23Docker Containers for Legal Professionals

E

A B1 C1 D

However, when the image is distributed, all files from all layers will be distributed: each of A through H, and also
modified files B’ and C’.

If a complete image is shipped, then the license conditions for software in all layers apply, even if, in the final view,
software in some of the layers can no longer be seen. This means that for compliance with a full image, every layer
that is inside the image should be checked.

An extra complexity could be linking. If a component is linked with other components in a layer and components
get overwritten with other versions under a different license, then the license implications might be different
depending on which layer is examined.

Distributing a recipe to build a container image

As discussed earlier Docker can also build images in a “just in time” fashion where instead of a full disk image or
container image only a recipe to assemble a container image is provided using a Dockerfile.

The software is assembled on the fly from a base image that is downloaded from a repository, or that is available
on the local system, with possibly extra software being installed from (other) upstream sources, like installing
updates from a Linux distribution.

An example is a recipe that defines that the base image is based on a specific version of Ubuntu Linux, with
updates being pulled from the Ubuntu update servers and then having a proprietary program installed from a
local server.

The Linux Foundation24Docker Containers for Legal Professionals

The recipes, such as a Dockerfile, can be stacked and depend on other recipe files. These recipe files are typically
stored in local files or registries that can be searched.

The recipes used for assembling the images are sometimes released under licenses that are different than the
actual software being aggregated (which is perfectly fine), and there is a real chance that people will misinterpret
this information and think that the licenses of the Dockerfile files apply to the assembled image, which is incorrect.

Misinterpretation of license provenance within a container image is not an imaginary problem as something similar
happened in a non-containerized context in the past with Android, of which large parts have been released under
Apache 2. This license confusion led some people to believe that all of Android had been released under Apache
2, even though there were significant portions of Android released under GPL-2.0 (Linux kernel, iptables, etc.) and
various versions of the LGPL license.

Who distributes the software?

From a compliance point of view, there is a big difference between distributing an image that has already been fully
created (and when all the software is included in the image) and distributing a Dockerfile that only describes how
the image should be built. In the former case, the software is distributed in binary form, while in the latter form,
possibly only a recipe for constructing an image is distributed.

When a complete image is distributed, only one party is doing distribution of the image -- the party sending the
built image out the door. However, when a Dockerfile (the recipe) is distributed, then when the end-user builds the
image, it is assembled on the fly with software possibly being pulled from various places. In this scenario, it means
distribution is possibly done by several parties, because (e.g.) each layer could come from a different third party.
One layer could be distributed by the party operating an image repository, with content in another layer coming
from a distribution (example: distribution updates), and content in another layer coming from yet another party
(custom download location).

To complicate matters, this also depends on the configuration of the image repository: many Dockerfile files have
not explicitly pinned the image that is used to a specific release of the image but simply specifies that the latest
image should be used. In theory, each image assembled using a Dockerfile file could be a different image, with
different software, possibly under different licenses, pulled from different places, and so on, because the source
repositories changed between the builds.

One complication is that for convenience and speed, people provide pre-built images (either of complete disk
images or individual packages) covered by free software licenses, without a written offer or the complete and

The Linux Foundation25Docker Containers for Legal Professionals

corresponding source code. As an example, many images provide binary builds of BusyBox (licensed under GPL-2.0)
for various architectures, without a written offer or source code being made available.

As users can push images or layers to repositories, but the images or individual layers are then indexed, made
available and distributed by the operator of the repository, the question arises who should be responsible for
license compliance. Should the compliance process be done by the user pushing a full image or a layer to a
repository, or the repository owner who then distributes the built image to others?

Hypothetically a company providing “Docker builds as a service” -- where after uploading a Dockerfile, a full image
would be created and made available -- could possibly be responsible for license compliance.

The license of dockerfiles versus software inside containers

The Dockerfile files can be licensed under an open source license themselves. It is vital to realize that the scope of
this license statement is only the Dockerfile and not the container image.

For example, the Dockerfile itself can be licensed under the MIT license but describing the installation of GPL
licensed software. In a typical use case, the license of the Dockerfile and the license of the described software are
entirely independent.

Compliance for all layers, not just the final layer

When distributing an image, typically, multiple layers are included and distributed. As these layers are stacked
on top of each other, it could be that the contents of one layer obscure the contents of the other layers. From a
pure license point of view, the final view does not matter: what matters is what is distributed. It could be that one
version of an open source licensed program is distributed in one layer, with another version of the same program
distributed in another layer. In this case, the license conditions for both versions need to be met.

Also, to be safe, one should not rely on the fact that specific layers of their image may already exist at the
destination or in the repository receiving the push, and that therefore they will not distribute the software for
those layers. At some point, that container will land in a place where none of the layers are pre-existing, so all
layers of the image must be provided to the recipient, and one will have to comply with distribution obligations for
each layer provided.

The Linux Foundation26Docker Containers for Legal Professionals

How to collect and publish the required source code?

An open question is how to collect complete and corresponding source code for containers with software under
licenses that require complete and corresponding source code. With the current Docker infrastructure, it is not
possible to automatically gather and publish the required source code. This means that extra work needs to be
done (either manual or scripted) to gather the right source code, store it, and make it available. There are a few
complications:

1. Creating a Docker image is not reproducible but depends on configurations. If different configuration options
are chosen every time a Docker image is created, the resulting image could be different. This means that
gathering source code at a later time than image creation might not yield the corresponding source code for the
image created earlier.

2. Layers can be composed at different times and source code for some layers might have disappeared.
3. Source code might need to be gathered from various places. Focusing on just system packages could lead to

missing packages.
4. Gathering source code needs to be done for all layers.
This is currently an unsolved problem.

The Linux Foundation27Docker Containers for Legal Professionals

License compliance checklist
for docker
The following section is a compliance checklist that should help companies distributing containers to understand
the license obligations better.

Is any software distributed?

The first question to ask is: is any software distributed at all? If the only thing that is distributed is a Dockerfile
recipe that needs to be instantiated by the user, and software gets pulled from repositories and the company
publishing the Dockerfile does not run the repository and also did not push (base) images that are used in that
Dockerfile into that repository, then the company is likely not distributing any software other than the Dockerfile
itself. This would require a thorough investigation of the used Dockerfile files and the build process.

What software is distributed?

Knowing which software is shipped and what license this software is under requires analyzing the software in all
layers of the container image, not just the final (assembled) layer that is presented to the user. The software might
have been hidden from view in the final layer, so a full analysis of all layers is necessary.

How is the software distributed?

Depending on how the software is distributed (as a full image, Dockerfile, etc.), different parties might be
responsible for fulfilling license obligations. Question 1 already touched upon this, but a full analysis of the
layers and their origin, as well as the install process, is important to understand who is responsible for ensuring
compliance.

If a full image is distributed by you, then it is clear that you are responsible for compliance for the full image’s
entire contents. If an image is assembled on the fly using a Dockerfile and Dockerfiles/images from one or multiple
repositories, then it might be either the parties running the repositories, or the parties that created the images that
are pulled from the repositories and pushed them into the repositories, who are responsible for compliance for
different portions of the container.

The Linux Foundation28Docker Containers for Legal Professionals

Who is distributing the software?

This question comes up often and is directly related to the previous topic. If you are distributing the container as
a whole, then you are responsible for license compliance for all of the software it contains. By contrast, if you are
distributing just a Dockerfile which tells people how to build a container, and the recipients are then using your
Dockerfile to obtain container layers from third-party locations, then you are perhaps not responsible for license
compliance for that software. However, even in this case, your downstream recipients may expect that you are
attending to container compliance matters, or that you will provide sufficient information to assist them in doing
so. Regardless of who is distributing software, all organizations will benefit from adopting a container compliance
policy and process.

The Linux Foundation29Docker Containers for Legal Professionals

Existing tools and other research
This document is far from the first attempt at tackling compliance of Docker containers. For example tools from the
Tern project11 can be used to analyze package information inside a Docker container image.

The Linux Foundation30Docker Containers for Legal Professionals

Conclusion
Docker has made the quick deployment of software much simpler, but also introduces a few legal challenges. What
the solutions to some of these legal challenges are is currently not clear.

Evaluating compliance challenges requires a basic understanding of the technical specifics of how containers
work and how they are built. With this understanding, it becomes evident how the distribution of containers
bears some similarities to more historical means of distributing software while making clearer the aspects that
can be obscured.

In this document, which will hopefully serve as a starting point for discussions to what the solutions should be, the
following challenges were identified:

1. There are different types of distribution and depending on which form of distribution is chosen you might or
might not have an obligation to distribute corresponding source code. It is not yet obvious to casual users when
or if obligations
are present.

2. The Docker tools and ecosystem currently do not make it easy to collect complete and corresponding source
code and are focused purely on assembling container images and deploying containers.

3. Because of the layered approach of Docker and only making the final layer visible it is easy to overlook possible
distribution of software. A thorough analysis of what is distributed using tools (such as Tern) is necessary in
those cases.

Future opportunities to improve the compliance environment for containers should likely focus on further
developing tooling and processes that can collect and publish the corresponding source code in a more
automated fashion.

The Linux Foundation promotes, protects and
standardizes Linux by providing unified resources
and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation or our other
initiatives please visit us at www.linuxfoundation.org

